
File format: 2D Format Text
Version 1 30.10.2017 Page 1

1 Introduction

Various fonts and colored text content can be saved with this file. In addition, information about the
text width, text alignment and separator are included in the file format. The text file is created using the
program "TextWriter". The file extension is called ".tdft" (Two Dimension Format Text).

2 Value types

Type Description Area

INT8 8Bit with sign -128 to 127

INT16 16Bit with sign -32.768 to 32.767

INT32 32Bit with sign -2.147.483.648 to 2.147.483.647

INT64 64Bit with sign -9.223.372.036.854.775.808 to 9.223.372.036.854.775.807

BYTE 8Bit unsigned 0 to 255

UINT16 16Bit unsigned 0 to 65.535

UINT32 32Bit unsigned 0 to 4.294.967.295

UINT64 64Bit unsigned 0 to 18.446.744.073.709.551.615

CHAR 8Bit character 0 to 255

WCHAR 16Bit character 0 to 65.535

FLOAT 32Bit floating point ± 1.5e-45 to ± 3.4e38

DOUBLE 64Bit floating point ± 5.0e-324 to ± 1.7e308

MEMORY Memory in bytes

...[] Array see section 2.1

-> { Start of the loop see section 2.2

} <- End of the loop see section 2.2

... Next table see section 2.3

! Dependence see section 2.4

Table 2: Value types

2.1 Array

The set consists of a specific value type. The count of the set is detailed in the information and is
usually the previous format value.

Example:

A Array INT16[] contains a certain count of INT16 values { INT16, INT16, INT16,
INT16, ... }.

INT16[], BYTE[], UINT32[], WCHAR[], usw.

2.2 The loop

In a loop, the format is repeatedly run through. The count of run through is specified in detail in the
information and is usually the previous value.

2.3 Next table

The file format is displayed further in the section and the table specified.

2.4 Dependence

The value is only available if a certain bit (flags) has been set.



File format: 2D Format Text
Version 1 30.10.2017 Page 2

3 Description

3.1 File format

Type Name Description Info

UINT32 IDNumber The file must have the ID number (0x57544454). 4.1

BYTE Version The file version must be 1 for this description. 4.2

BYTE Alignment The alignment of the text. 4.3

BYTE Flags The bits for the format description. 4.4

INT32! ThumbnailSize The size of the thumbnail in bytes. 4.5

MEMORY! ThumbnailImage The memory is an image file. 4.6

WCHAR! Separator The separator used in the text. 4.7

INT32! TextWidth A certain width of the presentation. 4.8

INT32 LetterLength The number of characters in the text. 4.9

... 3.2 Font format, Table 3.2

Table 3.1: File format

3.2 Font format

Type Name Description Info

INT32 FontCount The number of fonts. 5.1

-> { Font

INT32 FontNameLength The number of characters in the name of the font. 5.2

WCHAR[] FontName The name of the font. 5.3

BYTE FontStyle The styles of the font. 5.4

FLOAT FontSize The height of the font in pixels. 5.5

} <- Font

... 3.3 Color format, Table 3.3

Table 3.2: Font format

3.3 Color format

Type Name Description Info

INT32 ColorCount The number of color. 6.1

-> { Color

UINT32 ColorValue The ARGB colors in the text. 6.2

} <- Color

... 3.4 Letter format, Table 3.4

Table 3.3: Color format

3.4 Letter format

Type Name Description Info

UINT16[] LetterMemory All characters in the text. 7.1

BYTE[] LetterInfoMemory The information about each character in the text. 7.2

INT16[] LetterSizeMemory The size information about each character in the text. 7.3

Table 3.4: Letter format



File format: 2D Format Text
Version 1 30.10.2017 Page 3

4 Information about the file format

4.1 Identification number

The identification number identifies the file format. The number can also be displayed with 4 letters
(TDTW: Two Dimension Text Writer).

4.2 Version number

The version number is always 1 for this format description.

4.3 Text alignment

The value tells you how the text is aligned.

Name Value Description

Left 0 The text is aligned left justified.

Center 1 The text is centered.

Right 2 The text is aligned right justified.

Justified 3 The text is displayed as a justified sentence.

Table 4.3: Text alignment
4.4 Format bits

The bits determine the further content in the file format. If the bit (Compress) is set, the format for the
compressed text must be used. This format is called "TDCompressText".

Name Value Description

Separator 0x01 The file format contains a separator (see 4.7).

TextWidth 0x02 The file format contains a specific text width (see 4.8).

Compress 0x04 The file format is compressed (see format: TDCompressText).

Thumbnail 0x08 The file format contains a thumbnail image (see 4.5 and 4.6).

Table 4.4: Format bits
4.5 Thumbnail size

The size is specified in bytes. It can not be negative or 0 (see 4.4 Format bits).

4.6 Thumbnail image

The thumbnail shows a specific text section. The image can be saved in PNG, JPEG, TIFF or BMP
formats. By default, the PNG format is used.

4.7 Separator

A separator appears as a hyphen (-) by default. The character is inserted in word syllables to better
represent a text visually. If this value is not present, no word breaks are used (see 4.4 Format bits).

4.8 Display width

The value specifies a certain display width. If this value is not specified, the current window width
should be used as the text width (see 4.4 Format bits).

4.9 Number of characters in the text

The value indicates the number of characters in the text. This includes the special characters for a
new line. The number can not be negative. If the value is 0, the file format is terminated here.



File format: 2D Format Text
Version 1 30.10.2017 Page 4

5 Information about the font format

5.1 Number

The number of fonts contained. The value can not be less than 1 and greater than 256. The run of the
loop (Font) is determined by this value.

5.2 Name length

The number of characters in the name of the font.

5.3 Name

The name consists of a certain number of characters (letters). The name length (5.2) determines the
number of characters. A character is a 16 bit unsigned value. The memory size for the name results
from the name length times 2 bytes.

Memory size: FontNameLength * 2Bytes (16Bit)

5.4 Font styles

The font styles are given in bits and can therefore be combined.

For example: Bold, Italic (0x03)

Name Value Description

Regular 0x00 The text is displayed without further styles.

Bold 0x01 The characters are drawn in bold.

Italic 0x02 The characters are drawn in italics.

Underline 0x04 The characters are underlined.

Strikout 0x08 The characters are crossed out.

Table 5.4: Font styles

5.5 Font size

The font size is specified in pixels. The value is defined as a floating point number. The decimal places
are not used because the font height is specified in pixels.

6 Information about the color format

6.1 Number

The number of colors in the text. The value can not be less than 1 or greater than 256. The run of the
loop (Color) is determined by this value.

6.2 Color

The color (ARGB) is given as a 32bit value. The color component "Alpha" is not used.

7 Information about the character format

7.1 Character memory

The memory contains all characters as 16bit values. The number is given in section 4.9.

Memory size: LetterLength * 2Bytes (16Bit)



File format: 2D Format Text
Version 1 30.10.2017 Page 5

7.2 Character information

The information memory contains three byte values for each character (see section 4.9). The first for
the character type, the second as the font index and the third as the color index.

Type Name Description

BYTE Type The character type is described in table 7.2.2.

BYTE Fonts The zero based index of the stored fonts.

BYTE Colors The zero based index of stored colors.

Table 7.2.1: Information memory

The character type contains additional information about the character used. A word that can be split
contains the value 0x01 (Seperator) at the separation point. In addition, a separator is displayed after
the letter (see section 4.7). For a space, the value 0x02 (Space) is specified. A line break consists of
two special characters. At the end the character "Carriage Return" with the value 0x0D is inserted. The
character at the beginning of the line has the value 0x0A and is called "New Line". Both special
characters have the character type (Control) with the value 0x03. The beginning, the new line is
additionally marked with the bit 0x04 (NewLine), resulting in the character type with the value 0x07. If
a specific text width is used (see section 4.4), the bit (NewLine) may also have been set at the first
letter of a word.

Name Value Description

Letter 0x00 A character without additional information.

Seperator 0x01 The word can be divided with a separator.

Space 0x02 The character is a space.

Control 0x03 The special character is specified for a line break.

NewLine 0x04 The bit is set when a new line starts.

Table 7.2.2: Character type

7.3 Size information

The size memory contains three 16bit values for each character (see section 4.9). These widths are
labeled a, b and c and are indicated in pixels. The values a and c can be negative or 0.

Type Name Description

INT16 a The overhang at the beginning of the character.

INT16 b The width of the displayed character.

INT16 c The overhang at the end of the character.

Table 7.3: Size memory

Example:

The letter "b" starts with a distance (a) to the previous
character "A". The width (b) of the letter passes over the
following character "c". At the end of the letter "b" the negative
distance (c) for the overhang is deducted. The character "c" is
displayed at the current position.

Figure 7.3: Letter widths



File format: 2D Format Text
Version 1 30.10.2017 Page 6

8 Program for reading the file format

On the PanotiSoft website, there is a test program under technical documents, with which the file
format can be read out in a structured manner. In addition, the program code can also be downloaded.
The program was written under Visual Studio 2008 with the programming language C#.

Program: FileViewerX64.zip oder
FileViewerX32.zip

Project file: FileViewerCode.zip

Description: FileViewer.pdf

FileViewerCode:

Format file: FileViewerFormat.cs
Format class: FileViewerTDFormatText


