
File format: 2D Compress Text
Version 1 16.11.2017 Page 1

1 Introduction

Various fonts and colored text content can be saved with this file. In addition, the text width, alignment
and separator may be included in the format. For compression, all memory are combined in a bit
oriented manner. The text file is created using the program "TextWriter". The file extension is called
".tdct" (Two Dimension Compress Text).

2 Value types

Type Description Area

INT8 8Bit with sign -128 to 127

INT16 16Bit with sign -32.768 to 32.767

INT32 32Bit with sign -2.147.483.648 to 2.147.483.647

INT64 64Bit with sign -9.223.372.036.854.775.808 to 9.223.372.036.854.775.807

BYTE 8Bit unsigned 0 to 255

UINT16 16Bit unsigned 0 to 65.535

UINT32 32Bit unsigned 0 to 4.294.967.295

UINT64 64Bit unsigned 0 to 18.446.744.073.709.551.615

CHAR 8Bit character 0 to 255

WCHAR 16Bit character 0 to 65.535

FLOAT 32Bit floating point ± 1.5e-45 to ± 3.4e38

DOUBLE 64Bit floating point ± 5.0e-324 to ± 1.7e308

MEMORY Memory in bytes

...[] Array see section 2.1

-> { Start of the loop see section 2.2

} <- End of the loop see section 2.2

... Next table see section 2.3

! Dependence see section 2.4

Table 2: Value types

2.1 Array

The set consists of a specific value type. The count of the set is detailed in the information and is
usually the previous format value.

Example:

A Array INT16[] contains a certain count of INT16 values { INT16, INT16, INT16,
INT16, ... }.

INT16[], BYTE[], UINT32[], WCHAR[], usw.

2.2 The loop

In a loop, the format is repeatedly run through. The count of run through is specified in detail in the
information and is usually the previous value.

2.3 Next table

The file format is displayed further in the section and the table specified.

2.4 Dependence

The value exists only in the file when a specific condition is met.



File format: 2D Compress Text
Version 1 16.11.2017 Page 2

3 Description

3.1 File format

Typ Name Description Info

UINT32 IDNumber The file must have the ID number (0x57544454). 4.1

BYTE Version The file version must be 1 for this description. 4.2

BYTE Alignment The alignment of the text. 4.3

BYTE Flags The bits for the format description. 4.4

INT32! ThumbnailSize The size of the thumbnail in bytes. 4.5

MEMORY! ThumbnailImage The memory is an image file. 4.6

WCHAR! Separator The separator used in the text. 4.7

INT32! TextWidth A certain width of the presentation. 4.8

INT32 LetterLength The number of characters in the text. 4.9

... 3.2 Font format, Table 3.2

Table 3.1: File format

3.2 Font format

Typ Name Description Info

INT32 FontCount The number of fonts. 5.1

-> { Font

INT32 FontNameLength The number of characters in the name of the font. 5.2

WCHAR[] FontName The name of the font. 5.3

BYTE FontStyle The styles of the font. 5.4

FLOAT FontSize The height of the font in pixels. 5.5

INT32 LetterCount The number of characters used for this font. 5.6

UInt16[] LetterArray The memory for the characters used. 5.7

INT32 LetterSizeCount The size of the memory for the character sizes. 5.8

Int16[] LetterSizeArray The memory of character sizes. 5.9

} <- Font

... 3.3 Color format, Table 3.3

Table 3.2: Font format

3.3 Color format

Typ Name Description Info

INT32 ColorCount The number of color. 6.1

-> { Color

UINT32 ColorValue The ARGB colors in the text. 6.2

} <- Color

... 3.4 Letter format, Table 3.4

Table 3.3: Color format



File format: 2D Compress Text
Version 1 16.11.2017 Page 3

3.4 Letter format

Typ Name Description Info

INT32 LetterInfoSize The size of the information memory. 7.2

BYTE[] LetterInfoMemory The information for each character in the text. 7.3

INT32! LetterFontSize The size of the memory for the indices of the fonts. 7.4

BYTE[]! LetterFontMemory The memory contains the indices of the fonts. 7.5

INT32! LetterColorSize The size of the memory for the indices of the colors. 7.6

BYTE[]! LetterColorMemory The memory contains the indices of the colors. 7.7

INT32 LetterMaxCount The maximum size of a character index. 7.8

INT32! LetterIndexSize The size of the memory for the indices of the characters. 7.9

BYTE[]! LetterIndexMemory The memory contains the indices of the characters. 7.10

Table 3.4: Letter format

4 Information about the file format

4.1 Identification number

The identification number identifies the file format. The number can also be displayed with 4 letters
(TDTW: Two Dimension Text Writer).

4.2 Version number

The version number is always 1 for this format description.

4.3 Text alignment

The value tells you how the text is aligned.

Name Value Description

Left 0 The text is aligned left justified.

Center 1 The text is centered.

Right 2 The text is aligned right justified.

Justified 3 The text is displayed as a justified sentence.

Table 4.3: Text alignment

4.4 Format bits

The bits determine the further content in the file format. If the (Compress) bit is not set, the format for
the uncompressed text must be used. This format is called "TDFormatText".

Name Value Description

Separator 0x01 The file format contains a separator (see 4.7).

TextWidth 0x02 The file format contains a specific text width (see 4.8).

Compress 0x04 The file format is compressed (see format: TDCompressText).

Thumbnail 0x08 The file format contains a thumbnail image (see 4.5 and 4.6).

Table 4.4: Format bits

4.5 Thumbnail size

The size is specified in bytes. It can not be negative or 0 (see 4.4 Format bits).



File format: 2D Compress Text
Version 1 16.11.2017 Page 4

4.6 Thumbnail image

The thumbnail shows a specific text section. The image can be saved in PNG, JPEG, TIFF or BMP
formats. By default, the PNG format is used.

4.7 Separator

A separator appears as a hyphen (-) by default. The character is inserted in word syllables to better
represent a text visually. If this value is not present, no word breaks are used (see 4.4 Format bits).

4.8 Display width

The value specifies a certain display width. If this value is not specified, the current window width
should be used as the text width (see 4.4 Format bits).

4.9 Number of characters in the text

The value indicates the number of characters in the text. This includes the special characters for a
new line. The number can not be negative. If the value is 0, the file format is terminated here.

5 Information about the font format

5.1 Number

The number of fonts contained. The value can not be less than 1 and greater than 256. The run of the
loop (Font) is determined by this value.

5.2 Name length

The number of characters in the name of the font.

5.3 Name

The name consists of a certain number of characters (letters). The name length (5.2) determines the
number of characters. A character is a 16 bit unsigned value. The memory size for the name results
from the name length times 2 bytes.

Memory size: FontNameLength * 2Bytes (16Bit)

5.4 Font styles

The font styles are given in bits and can therefore be combined.

For example: Bold, Italic (0x03)

Name Value Description

Regular 0x00 The text is displayed without further styles.

Bold 0x01 The characters are drawn in bold.

Italic 0x02 The characters are drawn in italics.

Underline 0x04 The characters are underlined.

Strikout 0x08 The characters are crossed out.

Table 5.4: Font styles

5.5 Font size

The font size is specified in pixels. The value is defined as a floating point number. The decimal places
are not used because the font height is specified in pixels.



File format: 2D Compress Text
Version 1 16.11.2017 Page 5

5.6 Number of characters

The number of characters used with the current font. The value can not be less than 1 or greater than
65536.

5.7 Character memory

The memory contains all the characters for the current font as 16bit values. The special characters
"Carriage Return" and "New Line" can also be contained in the memory. The number of characters is
given in section 5.6.

Memory size: LetterCount * 2Bytes (16Bit)

5.8 The size of the memory for the character sizes

The value indicates the size of the memory in bytes. For each character (see sections 5.6 and 5.7),
three 16bit values are used.

Condition: LetterCount * 6 == LetterSizeCount

5.9 The memory of character sizes

The size memory contains three 16bit values for each character (see section 4.9). These widths are
labeled a, b and c and are indicated in pixels. The values a and c can be negative or 0.

Type Name Description

INT16 a The overhang at the beginning of the character.

INT16 b The width of the displayed character.

INT16 c The overhang at the end of the character.

Table 5.9: Size memory

Example:

The letter "b" starts with a distance (a) to the previous
character "A". The width (b) of the letter passes over the
following character "c". At the end of the letter "b" the negative
distance (c) for the overhang is deducted. The character "c" is
displayed at the current position.

Figure 5.9: Letter widths

6 Information about the color format

6.1 Number

The number of colors in the text. The value can not be less than 1 or greater than 256. The run of the
loop (Color) is determined by this value.

6.2 Color

The color (ARGB) is given as a 32bit value. The color component "Alpha" is not used.



File format: 2D Compress Text
Version 1 16.11.2017 Page 6

7 Information about the character format

7.1 Decompression of a bit oriented memory

A memory can contain only bytes as the smallest unit. One byte (8 bits) can represent a number from
0 to 255. The required values can also be smaller than the maximum number. If, for example, only
values from 0 to 7 are used, the memory is divided into 3bit blocks. The program 7.1 converts a bit
oriented memory into a byte oriented memory.

Bits Values Number Description

0 0 1 The memory is not used.

1 0..1 2 The memory contains at least 2 different values.

2 0..3 4 The memory contains at least 3 to 4 different values.

3 0..7 8 The memory contains at least 5 to 8 different values.

4 0..15 16 The memory contains at least 9 to 16 different values.

5 0..31 32 The memory contains at least 17 to 32 different values.

6 0..63 64 The memory contains at least 33 to 64 different values.

7 0..127 128 The memory contains at least 65 to 128 different values.

8 0..255 256 The memory does not have to be decompressed.

Table 7.1: Bit oriented memory

Int32 LetterLength; //See 4.9
Int32 ValueMax; //Number

Byte[] ValueArray; //Input memory
Byte[] ResultArray = new Byte[LetterLength]; //Output memory

Int32 BitCountMax = (Int32) Math.Ceiling(Math.Log(ValueMax, 2)); //Bits
Int32 BitCount = 0;
Int32 Index = 0;

for(Int32 i = 0; i < LetterLength; i++) {
Byte Value = ValueArray[Index];

Value <<= BitCount;
BitCount += BitCountMax;

if(BitCount >= 8) {
if(BitCount == 8) {
BitCount = 0;

Value >>= 8 - BitCountMax;

Index++;
} else {
BitCount -= 8;

Byte ValueNext = ValueArray[++Index];
ValueNext >>= 8 - BitCount;

Value >>= 8 - BitCountMax;
Value |= ValueNext;

}
} else {

Value >>= 8 - BitCountMax;
}

ResultArray [i] = Value;
}

Program 7.1: Decompression



File format: 2D Compress Text
Version 1 16.11.2017 Page 7

7.2 Size of the memory for the character information

The value indicates the size of the information memory in bytes. The value can not be smaller than 1
or greater than the number of characters (see section 4.9) in the text.

7.3 Information memory

The information memory contains a 3bit value for each character (see section 4.9). The additional
information can only have the maximum value 0x07 (3 bits) if the value "Control" and the bit "NewLine"
are contained. For conversion to byte memory see program 7.1.

Int32 ValueMax = 8; //Number
Byte[] ValueArray = LetterInfoMemory; //Input memory

The memory contains additional information about the character used. A word that can be split
contains the value 0x01 (Seperator) at the separation point. In addition, a separator is displayed after
the letter (see section 4.7). For a space, the value 0x02 (Space) is specified. A line break consists of
two special characters. At the end the character "Carriage Return" with the value 0x0D is inserted. The
character at the beginning of the line has the value 0x0A and is called "New Line". Both special
characters have the information (Control) with the value 0x03. The beginning, the new line is
additionally marked with the bit 0x04 (NewLine), the result is the information with the value 0x07. If a
specific text width is used (see section 4.4), the bit (NewLine) may also have been set at the first letter
of a word.

Name Value Description

Letter 0x00 A character without additional information.

Seperator 0x01 The word can be divided with a separator.

Space 0x02 The character is a space.

Control 0x03 The special character is specified for a line break.

NewLine 0x04 The bit is set when a new line starts.

Table 7.3: Character information

7.4 Size of the memory for the indices of the fonts

The value specifies the size of the memory for the indexes of the fonts in bytes. The value can not be
smaller than 1 or greater than the number of characters (see section 4.9) in the text. If only one font is
used (see section 5.1), the value is not included in the character format.

7.5 Memory for the indices of the fonts

The memory contains a zero based index for a font for each character (see section 4.9). If only one
font is used, the memory is not included in the character format. The number of fonts (see section 5.1)
determines the bit orientation of the memory using table 7.1. For conversion to byte memory see
program 7.1.

Int32 ValueMax = FontCount; //See 5.1
Byte[] ValueArray = LetterFontMemory; //Input memory

7.6 Size of the memory for the indices of the colors

The value specifies the size of the memory for the indices of the colors in bytes. The value can not be
smaller than 1 or greater than the number of characters (see section 4.9) in the text. If only one color
is used (see section 6.1), the value is not included in the character format.



File format: 2D Compress Text
Version 1 16.11.2017 Page 8

7.7 Memory for the indices of the colors

The memory contains a zero based index for each character (see Section 4.9) for a color. If only one
color is used (see section 6.1), the memory is not included in character format. For conversion to byte
memory see program 7.1.

Int32 ValueMax = ColorCount; //See 6.1
Byte[] ValueArray = LetterColorMemory; //Input memory

7.8 Maximum index

The value specifies the maximum index of all characters within all fonts. The value can not be less
than 1 or greater than 65536. The maximum index can also be determined in the font format (see
section 3.2).

7.9 Size of the memory for the indices of the characters

The value indicates the amount of memory for the indices of the characters in bytes. The value can not
be smaller than 1 or greater than the number of characters (see section 4.9) in the text. If only one
character is used in all fonts (see section 7.8), the value is not included in the character format.

7.10 Memory for the indices of the characters

The memory contains a zero based index for each character (see section 4.9). Based on the font
index (see section 7.5), the character can now be determined. If only one character per font is used
(see section 7.8), the memory is not in character format. For conversion to byte memory see program
7.1. If more than 256 characters have been used for a font, the 7.1 program can not be used. In this
case, a new program code with a 16bit result memory must be created.

Int32 ValueMax = LetterMaxCount; //See 7.8
Byte[] ValueArray = LetterIndexMemory; //Input memory

8 Program for reading the file format

On the PanotiSoft website, there is a test program under technical documents, with which the file
format can be read out in a structured manner. In addition, the program code can also be downloaded.
The program was written under Visual Studio 2008 with the programming language C#.

Program: FileViewerX64.zip oder
FileViewerX32.zip

Project file: FileViewerCode.zip

Description: FileViewer.pdf

FileViewerCode:

Format file: FileViewerFormat.cs
Format class: FileViewerTDCompressText


